Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Mathematics A (4MA1)
Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P68798RA
Publications Code 4MA1_2H_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

No working

- If no working is shown then correct answers normally score full marks
- If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

- If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
- If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
- If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified.
- Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
- If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

- It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
- It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
- Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

- Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions $4,10,14 a, 15 a, 15 b, 18,24$ the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Q	Working	Answer	Mark	Notes
1			3	```M1 for d=9 or (c+d)\div2=8 (algebraically or clearly labelled integers) or d-a=4 (algebraically or clearly labelled integers)```
				M1 for at least two of $a=5$ or $c=7$ or $d=9$ or $(c+d) \div 2=8$ (algebraically or clearly labelled integers) or or $d-a=4$ (algebraically or clearly labelled integers)
		$\begin{gathered} a=5, b=6, \\ c=7, d=9 \end{gathered}$		A1 All correct
				Total 3 marks

3	For sight of $5 \mathrm{hrs} 24 \mathrm{mins}=5.4(\mathrm{hrs})$ or $5 \frac{24}{60}\left(=5 \frac{2}{5}\right)$ oe or 324 (mins) or 19440 (secs)		3	B1	
	$3980 \div 5.4 \text { or } \frac{3980}{324} \times 60 \text { oe }$			M	For distance \div time that should give the correct speed in km/h. (SC allow $3980 \div 5.24(=759.5 \ldots$ or 760$)$ for this mark unless mark has been awarded for 324 minutes or 5.4 hours oe)
		737		A1	awrt 737 (if no working shown, 738 gets SCB2)
					Total 3 marks

4	$\frac{16}{3}(-) \frac{20}{7} \text { or }(5) \frac{7}{21}(-)(2) \frac{18}{21}$		3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator (no need for minus sign)
	$\begin{aligned} & \frac{112}{21}-\frac{60}{21} \text { or } 5 \frac{7}{21}-2 \frac{18}{21}=3-\frac{11}{21} \text { oe or } \\ & 5 \frac{7}{21}-2 \frac{18}{21}=4 \frac{28}{21}-2 \frac{18}{21} \end{aligned}$			M1	for correct fractions with a common denominator with minus sign or mixed numbers to the stage shown
	$\begin{aligned} & \frac{112}{21}-\frac{60}{21}=\frac{52}{21}=2 \frac{10}{21} \text { oe or } 3-\frac{11}{21}=2 \frac{10}{21} \text { or } \\ & 5 \frac{7}{21}-2 \frac{18}{21}=4 \frac{28}{21}-2 \frac{18}{21}=2 \frac{10}{21} \end{aligned}$	Shown		A1	Dep on M2 for a correct answer from fully correct working If all 3 fractions turned into improper fractions on the first line $\frac{16}{3}-\frac{20}{7}=\frac{52}{21}$ then the student clearly needs to show that the LHS $=\frac{52}{21}$
					Total 3 marks

5	$28 \times 12(=336)$ or $5 \times 12(=60)$ or $18 \times 12(=216)$ or $28 \times 20(=560)$ or $\frac{1}{2}(C D+" 18 ") " 8 "$ oe eg $72+4 C D$ [numbers in "" come from correct working] Check diagram for areas		4	M1	For a correct method to find the area of a rectangle (may be seen as part calculation) or a correct expression for the area of the trapezium with numbers substituted. Allow for other correct methods to find area linked to this shape.
	$\begin{aligned} & " 336 "+0.5(" 18 "+C D) " 8 "=434 \text { oe eg } \\ & 4(" 18 "+C D)=98 \end{aligned}$ or $\text { eg } 0.5(" 18 "+C D) " 8 "=" 98 " \text { oe eg } \frac{1}{2}(18+C D)=12.25$ or " 560 " $-2(0.5(5+x)$ " $8 ")=434$ oe (where x is horizontal from D to perp with $A F$) [numbers in " " come from correct working]			M1	correct use of their values from correct working for an equation involving $C D(C D$ could be labelled with any letter)
	$\begin{aligned} & \text { eg }(C D=) \frac{196-144}{8}\left(=\frac{52}{8}\right) \text { or }(C D=) \frac{98-72}{4}\left(=\frac{26}{4}\right) \\ & \text { or }(C D=) \frac{434+152-560}{4} \text { or }(C D=) 2 \times 12.25-18 \text { or } \\ & 98 \times 2(=196), " 196 " \div 8(=24.5), " 24.5-18 \end{aligned}$			M1	a correct process to solve a correct equation or a correct process to find $C D$ using correct values
		6.5		A1	oe
					Total 4 marks

7	$\begin{aligned} & \times 1000 \\ & (\div 60 \div 60) \text { or } \div 3600 \end{aligned}$ or sight of 81000 or 1350 or 0.0225		3		For one of $\times 1000$ (eg sight of 81000) or ($\div 60 \div 60$) or $\div 3600$ oe
	$\frac{81 \times 1000}{60 \times 60}$ oe eg $\frac{81}{3.6}$ or $81 \times \frac{5}{18}$ oe				For a fully correct method with correct use of brackets eg $81000 \div 60 \times 60$ is M1 only if not recovered
		22.5			$\text { or } \frac{45}{2} \text { or } 22 \frac{1}{2}$
					Total 3 marks

9	50000×1.013 (=50 650) oe Or $50000 \times 0.013(=650)$ oe (NB: accept $\left(1+\frac{1.3}{100}\right)$ for 1.013 but not $(1+1.3 \%)$)		3	M1	For finding 101.3% or 1.3% of 50000	M2 for 50000×1.013^{4} or 50000×1.013^{5}
	$\begin{aligned} & " 50650 " \times 1.013(=51308.45) \\ & " 51308.45 " \times 1.013(=51975.45 \ldots) \\ & " 51975.45 \ldots . . \times 1.013 \end{aligned}$			M1	dep for a complete method	
		52651		A1 awrt 52651 if no marks awarded then SCB1 for 50000×0.013^{n} $50000 \times 0.987^{4}(=47450 \ldots \ldots)$ $50000 \times 0.052(=2600)$ $50000 \times 1.052(=52600)$ $50000 \times 1.013^{2}(=51308.45)$ $50000 \times 1.013^{3}(=51975.45 \ldots)$		
						Total 3 n

10	eg $\begin{array}{rlrl}7 x+3 y & =3 \\ 9 x-3 y & =21\end{array}$ or $\left.\begin{array}{rl}-21 x+9 y & =9 \\ & 21 x-7 y\end{array}\right)=49$ or eg $7 x+3(3 x-7)=3$ or $7\left(\frac{7+y}{3}\right)+3 y=3$		3	M1	a correct method to eliminate x or y - multiplying one or both equations so that one variable can be eliminated (allow a total of one error in multiplication) and the correct operation to eliminate or for substitution of one variable into the other equation.
	If first M1 gained then they can substitute an incorrect value if from 'correct' method to gain this mark.			M1	dep on M1 for a correct method to calculate the value of other letter eg substitution or starting again with elimination
		$x=1.5, y=-2.5$		A1	oe dep on M1
					Total 3 marks

11 (i)	$(x \pm 3)(x \pm 8)$		2	M1	or $(x+a)(x+b)$ where $a b=-24$ or $a+b=5$
		$(x-3)(x+8)$		A1	
(ii)		3, -8	1	B1ft	Must ft from their answer to (i) ft from their incorrect factors in the form $(x+a)(x+b)$
					Total 3

$\mathbf{1 2}$	$7 \times 2.7(=18.9)$ or $4 \times 3.3(=13.2)$ or $\frac{3 W+4 \times 3.3}{7}=2.7$ oe eg $3 W+13.2=18.9$		M1For one correct product or for a correct equation for W	
	$\frac{7 \times 2.7-4 \times 3.3}{3}$ or $\frac{18.9 "-" 13.2 "}{3}$ or $\frac{5.7}{3}$ or $3 W=5.7$			M1
	If you see 1.9 from correct working and they do further work to this value, award M2	1.9		A1

(b)	$\begin{aligned} & g+7=\frac{c+3}{4+c} \text { or } g(4+c)=c+3-7(4+c) \text { or } \\ & g=\frac{c+3}{4+c}-\frac{7(4+c)}{4+c}\left(=\frac{c+3-28-7 c)}{4+c}\right) \end{aligned}$		4	M1	Adding 7 to both sides as a first step or removing fraction correctly
	$\begin{aligned} & \text { eg } 4 g+g c+28+7 c=c+3 \text { or } \\ & 4 g+g c=c+3-28-7 c \text { oe } \\ & \hline \end{aligned}$			M1	removing fraction and expanding all brackets in an equation with no more than one error
	$\begin{aligned} & \text { eg } \quad g c+7 c-c=3-28-4 g \text { or } \\ & 28-3+4 g=c-7 c-g c \end{aligned}$			M1ft	ft dep on previous M1 - terms in c on one side and other terms on the other side in an equation
		$c=\frac{-(4 g+25)}{g+6}$			oe eg $c=\frac{25+4 g}{-6-g}$ or $c=\frac{3-28-4 g}{g+7-1}$ oe [if $\mathrm{c}=$ is missing allow full marks if seen in working otherwise 3 marks] (SCB2 for an answer of $c=\frac{-4-4 g}{g-1}$ oe or $c=\frac{31-4 g}{g-8}$ oe SCB1 in working for $4 g+c g=c+3-7$ oe or $4 g+c g-28-7 c=c+3$ oe
					Total 7 marks

16 (a)		Fully correct Venn diagram	3		For 13 correct in G only For all 7 others correct (B1 for 4, 5 or 6 others correct (does not need to be complete for this))	
(b)(i)		36	1	B1ft	ft from a diagram where values are present in the required regions	If these 3 parts are given as probabilities, please mark incorrect the first time but award marks from there on if numerator is correct
(ii)		44	1	B1ft		
(iii)		35	1	B1ft		
(c)		$\frac{18}{53}$	2	B2ft oe $0.33(96 \ldots)$ or $33(.96 \ldots) \% \mathrm{ft}$ their Venn diagram or (B1 for $\frac{18}{m}$ where $m>18$ or $\frac{n}{53}$ where $n<53$ or for 18 : 53 or other incorrect notation or B1ft their Venn diagram for $\frac{" 18 "}{m}$ where $m>" 18$ " or $\frac{n}{" 53 "}$ where $n<" 53 "$)		
						Total 8 marks

17	$M=k h^{3}$ oe or $4=k \times 0.5^{3}$ oe		4		$k \neq 1$ and where k could be any letter	M2 for $500 \quad h^{3}$
	$k=\frac{4}{0.5^{3}}$ or $k=\frac{4}{0.125}$ or $k=32$				Allow this for M2 if $M=k h^{3}$ is not written	$\begin{aligned} & \frac{200}{4}=\frac{n}{0.5^{3}} \text { oe or } \\ & 125 \times 0.5^{3}(=15.625) \mathrm{oe} \end{aligned}$
$\begin{aligned} & h=\sqrt[3]{\frac{500}{32}} \text { or } \sqrt[3]{\frac{500 \times 0.5^{3}}{4}} \text { or } \sqrt[3]{15.625} \text { or } \\ & h=5 \times 0.5 \end{aligned}$				M1 for a correct expression for h using correct values or a value of k from a completely correct method		
		2.5		A1	oe	
						Total 4 marks

18	$7.45,7.55,3.415,3.425,1.5,2.5$		3		For one correct upper or one correct lower bound Allow $7.54 \dot{9}$ for $7.55,3.424 \dot{9}$ for $3.425,2.4 \dot{9}$ for 2.5
	$(X=) \frac{2 \times 7.55-3.415}{1.5} \text { oe eg } \frac{11.685}{1.5}$				$\begin{aligned} & \frac{2 \times U B_{a}-L B_{b}}{L B_{f}} \text { where } 7.5<U B_{a} \leq 7.55,3.415 \leq L B_{b}<3.42, \\ & 1.5 \leq L B_{f}<2 \\ & \text { (also award this mark for } \frac{7.55-3.415}{1.5} \text { or } \frac{2(7.55-3.415)}{1.5} \text {) } \end{aligned}$
		7.79			must be from correct working
					Total 3 marks

19	$(a=) \frac{14}{3 \times \frac{7}{4 y-3}-7}$		3	M1 For a correct substitution
	$(a=) \frac{14(4 y-3)}{21-7(4 y-3)}$ oe eg $\frac{56 y-42}{21-28 y+21}$		M1 or for a correct but unsimplified answer in the form $\frac{m}{n}$ the denominator should be simplified to remove the fraction	
		$\frac{4 y-3}{3-2 y}$		A1 oe but must be simplified

$\begin{aligned} & 19 \\ & \text { alt } \end{aligned}$	$\begin{aligned} & x=\frac{14+7 a}{3 a} \text { and } \\ & \frac{14+7 a}{3 a}=\frac{7}{4 y-3} \end{aligned}$		3	M1	For rearranging ' x ' to be in terms of a and equating two expressions for a
	$\begin{aligned} & a(42-28 y)=56 y-42 \text { oe eg } \\ & (a=) \frac{56 y-42}{21-28 y+21} \end{aligned}$			M	or for a correct but unsimplified answer in the form $\frac{m}{n}$
		$\frac{4 y-3}{3-2 y}$			oe but must be simplified
					Total 3 marks

20	eg $2 d \times 2 d-4 \times \pi \times\left(\frac{1}{2} d\right)^{2}(=40)$ oe or $4 r \times 4 r-4 \times \pi \times r^{2}(=40)$ oe or $x^{2}-4 \pi\left(\frac{1}{4} x\right)^{2}(=40)$ oe or $w^{2}-\pi\left(\frac{1}{2} w\right)^{2}(=10) \mathrm{oe}$		4		oe a correct expression or a correct equation for the shaded area (must be in one unknown only) where $d=$ diameter $r=$ radius $x=$ side of large square $w=$ side of square when shape divided into 4
	$\begin{aligned} d & =\sqrt{\frac{40}{4-\pi}}(=6.826 \ldots) \text { or } 2 d=\sqrt{\frac{160}{4-\pi}}(=13.652 \ldots) \text { oe } \\ r & =\sqrt{\frac{40}{16-4 \pi}}(3.413 \ldots) \text { or } 4 r=\sqrt{\frac{640}{16-4 \pi}}(=13.652 \ldots) \mathrm{oe} \\ x & =\sqrt{\frac{40}{1-0.25 \pi}}(13.652 \ldots) \text { or } w=\sqrt{\frac{10}{1-0.25 \pi}}(=6.826 \ldots) \mathrm{oe} \end{aligned}$				oe a correct expression for d or $2 d$ or r or $4 r$ or x or w
	```(perimeter =) 8\times "6.826\ldots.." ( }8\times\mathrm{ diameter(or side of small square when divided)) or 16\times"3.413..." (16 x radius) oe or 4\times"13.652\ldots.."(4 x side of square)```				dep on first M1 For substituting values into a calculation for the perimeter use of their $r, d, x, w$
		54.6		A1	54.4-54.7
					Total 4 mar


21	$\overrightarrow{O P}=4 \mathbf{a}+2 \mathbf{a}+8 \mathbf{b}(=6 \mathbf{a}+8 \mathbf{b})$ oe OR $\overrightarrow{P O}=-6 \mathbf{a}-8 \mathbf{b}$ oe or $\overrightarrow{A B}=6 \mathbf{b}-4 \mathbf{a}$ oe OR $\overrightarrow{B A}=4 \mathbf{a}-6 \mathbf{b}$ oe or $\overrightarrow{B P}=6 \mathbf{a}+2 \mathbf{b}$ oe OR $\overrightarrow{P B}=-6 \mathbf{a}-2 \mathbf{b}$ oe		5		oe for one of $\overrightarrow{O P}$ or $\overrightarrow{P O}$ or $\overrightarrow{A B}$ or $\overrightarrow{B A}$ or $\overrightarrow{B P}$ or $\overrightarrow{P B}$ (may be seen as part of another vector calculation)
	$\overrightarrow{O Q}=4 \mathbf{a}+\lambda(6 \mathbf{b}-4 \mathbf{a})$ oe OR $6 \mathbf{b}+\mu(4 \mathbf{a}-6 \mathbf{b})$ oe OR $x(6 \mathbf{a}+8 \mathbf{b})$ oe or $\overrightarrow{B Q}=\mu(4 \mathbf{a}-6 \mathbf{b})$ oe OR $-6 \mathbf{b}+\lambda(6 \mathbf{a}+8 \mathbf{b})$ oeOR $4 \mathbf{a}-6 \mathbf{b}+x(6 \mathbf{b}-4 \mathbf{a})$ oe or   $\overrightarrow{A Q}=y(6 \mathbf{b}-4 \mathbf{a})$ oe OR $-4 \mathbf{a}+x(6 \mathbf{a}+8 \mathbf{b})$ oe OR $6 \mathbf{b}-4 \mathbf{a}+\mu(4 \mathbf{a}-6 \mathbf{b})$ oe OR $2 \mathbf{a}+8 \mathbf{b}+m(6 \mathbf{a}+8 \mathbf{b})$ oe   or   $\overrightarrow{Q P}=\lambda(6 \mathbf{a}+8 \mathbf{b})$ oe OR $\mu(4 \mathbf{a}-6 \mathbf{b})+2 \mathbf{a}+8 \mathbf{b}$ oe				for one of $\overrightarrow{O Q}$ or $\overrightarrow{Q O}$ or $\overrightarrow{B Q}$ or $\overrightarrow{Q B}$ or $\overrightarrow{A Q}$ or $\overrightarrow{Q A}$ or $\overrightarrow{Q P}$ or $\overrightarrow{P Q}$
					for a second correct expression for the same vector OR   for two correct expressions for parallel vectors eg 2 of $\overrightarrow{O Q}, \overrightarrow{O P}, \overrightarrow{Q P}$ oe AND using ratios to form an equation in one variable that can lead to a solution eg $\overrightarrow{O Q}=4 \mathbf{a}+k(6 \mathbf{b}-4 \mathbf{a})$ and $\overrightarrow{Q P}=2 \mathbf{a}+8 \mathbf{b}-k(6 \mathbf{b}-4 \mathbf{a})$ and $\frac{4-4 k}{2+4 k}=\frac{6 k}{8-6 k}$
	eg $\lambda=\frac{8}{17}$ or $\mu=\frac{9}{17}$ or $A Q: Q B=\frac{4 x}{3}: \frac{3 x}{2}$ oe				oe
		8:9			
					Total 5 mar


22	$(\text { gradient } A M=) \frac{4-2}{-3-0} \text { oe }\left(=-\frac{2}{3}\right)$		7	M1	A correct method to find gradient of $A M$
	$\begin{aligned} & y=\frac{3}{2} x+2 \text { or } \\ & \text { eg } \frac{y-2}{x}=\frac{3}{2} \text { oe } \end{aligned}$			M1	For the correct equation of the line passing through $B D$ or for a correct expression involving the $x$ and $y$ coordinates of point $B$ or point $D$
	$\begin{aligned} & (x--3)^{2}+(y-4)^{2}=6.5^{2} \text { or } \\ & (x-0)^{2}+(y-2)^{2}=6.5^{2}-\left[(-3-0)^{2}+(4-2)^{2}\right] \\ & \text { oe eg } x^{2}+(y-2)^{2}=29.25 \end{aligned}$			M1	A correct equation in $x$ and $y$ to find the coordinates of $B$ and $D$
	$\begin{aligned} & \text { eg } x^{2}+6 x+9+y^{2}-8 y+16-42.25=0 \mathrm{oe} \\ & x^{2}+y^{2}-4 y+4-29.25=0 \quad \text { oe } \end{aligned}$			M1	Brackets expanded
	$\begin{aligned} & \text { eg } x^{2}+6 x+9+\left(\frac{3}{2} x+2\right)^{2}-8\left(\frac{3}{2} x+2\right)+16-42.25=0 \\ & \left(\frac{2 y-4}{3}\right)^{2}+y^{2}-4 y+4-29.25=0 \text { oe } \end{aligned}$			M1	For a correct substitution into a correct equation to get an equation in either $x$ only or $y$ only
	$\begin{aligned} & \text { eg } \frac{13}{4} x^{2}=\frac{117}{4} \text { or } \\ & 13 y^{2}-52 y-211.25=0 \end{aligned}$			M1	A fully correct simplified equation in $x$ or in $y$ - all brackets expanded and like terms grouped.
		$(3,6.5)(-3,-2.5)$		A1	correct coordinates   SCB3 for one pair of correct coordinates or both $x$ values correct or both $y$ values correct
					Total 7 marks

See next page for alternative scheme

$\begin{gathered} \hline 22 \\ \text { Alt } 1 \end{gathered}$	$(A M=) \sqrt{3^{2}+2^{2}}(=\sqrt{13}=3.605 \ldots) \quad$ or $\left(A M^{2}=\right) 3^{2}+2^{2}(=13)$	7	M1	Use of Pythagoras for point $A$ to point $M$
	$(B M=) \sqrt{6.5^{2}-" \sqrt{13} " 2}\left(=\sqrt{29.25}=\frac{3 \sqrt{13}}{2} 5.4083 \ldots\right)$		M1	A correct method to find the length of $B M$ or $D M$
	$(\mathrm{SF}=) \frac{\sqrt{29.25}}{\sqrt{13}}=\frac{3}{2}$ oe or $\quad M N=x, \quad B N=1.5 x($ see diag $)$ or $(L A M=) \sin ^{-1} \frac{3}{\sqrt{13}}(=56.3 \ldots)$ oe or $(L M A=) \cos ^{-1} \frac{3}{\sqrt{13}}(=33.6 \ldots)$ or		M1	A correct method to find the SF of the enlargement of the sides $A M$ to $B M$ or angle $L A M$ OR LMA
	eg $\overrightarrow{M B}_{x}=\frac{3}{2} \times 2$ or $\overrightarrow{M B}_{y}=\frac{3}{2} \times 3$ or $\overrightarrow{M D}_{x}=-\frac{3}{2} \times 2$ or $\overrightarrow{M D}_{y}=-\frac{3}{2} \times 3$ oe or $\begin{aligned} & x^{2}+(1.5 x)^{2}=\sqrt{29.25}^{2} \text { or } M N=\sqrt{29.25} \cos 56.3 \ldots(=3) \text { oe } \\ & \text { or } B N=\sqrt{29.25} \sin 56.3 \ldots(=4.5) \text { oe } \end{aligned}$   turn over		M1	A correct method to find the translation of at least one component of $M B$ or $M D$ (need not be written in vector form) OR correct Pythagoras statement using the SF to find $x$ coordinates OR 1 correct trig statement to find translations from $M$
	$\overrightarrow{M B}_{x}=\frac{3}{2} \times 2$ and $\overrightarrow{M B}_{y}=\frac{3}{2} \times 3$ or $\overrightarrow{M D}_{x}=-\frac{3}{2} \times 2$ and $\overrightarrow{M D}_{y}=-\frac{3}{2} \times 3 \mathrm{oe}$ or $x^{2}+2.25 x^{2}=29.25$   or $M N=\frac{3 \sqrt{13}}{2} \cos 56.309 \ldots(=3) \text { and } B N=\frac{3 \sqrt{13}}{2} \sin 56.309 \ldots(=4.5) \mathrm{oe}$		M1	A correct method to find the translation of both components of $M B$ or $M D$ (need not be written in vector form) OR correct Pythagoras statement with no brackets using the SF to find $x$ coordinates OR 2 correct trig statements to find translations from $M$


	eg $(0,2)$ is translated $\binom{3}{4.5}$ or $(0+3,2+4.5)(=(3,6.5))$ or $(0,2)$ is translated $\binom{-3}{-4.5}$ or $(0-3,2-4.5)(=(-3,-2.5))$ oe or $3.25 x^{2}=29.25$		M1 correct method to find the coordinates of $B$ or $D$ or one pair of correct coordinates or a correct method to find both $x$ coordinates or both $y$ coordinates OR a fully correct simplified equation in $x$ all brackets expanded and like terms grouped.	
		$\begin{gathered} (3,6.5) \\ (-3,-2.5) \end{gathered}$		correct coordinates SCB3 for one correct coordinate or both $x$ values correct or both $y$ values correct
				Total 7 marks


$\mathbf{2 3}$ (i)		$(180,0)$	1	B1
	(ii)		$(360,-1)$	1
B1	Total 2 marks			



Pearson Education Limited. Registered company number 872828

